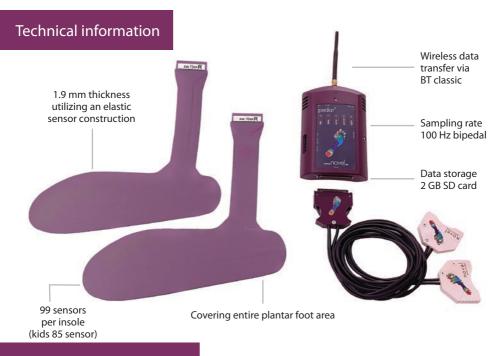


pedar®

Leading system for in-shoe measurement.

In-shoe pressure sensors


pedar® enables the analysis of the interaction between the foot and the shoe at highest quality and precision levels.

Use the system for **in-shoe pedography** and collect reliable pressure and load distribution data.

pedar® key features:

- measure in-shoe pressure in a free moving environment with reliable and precise sensors
- scan the complete contact area with individually calibrated sensors that cover 99.5% of the contact area between foot and shoe
- analyze interaction between the foot and the shoe in real-time
- compare effect of adjustments within seconds (e.g. shoe inlays, gait parameters, etc.)

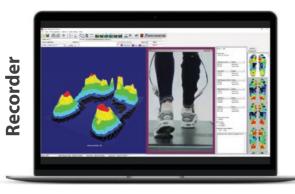
pedar® software features



novel GmbH (Global, GER) Ismaninger Str. 51, 81675 Munich tel: +49 (89) 417767-0 e-mail: sales@novel.de web: www.novel.de

3367 Babcock Blvd, Suite 101 Pittsburgh, PA 15237 tel: +1 (412) 755-0200 e-mail: novelinc@novelusa.com web: www.novelusa.com copyright © novel GmbH - Jan 2024

novel electronics inc. (North America)


Software packages

Software suite	Standard
Pressure distribution measurement	✓
Step analysis	✓
Step analysis	√

8 8
MA-

Software suite	Expert
Pressure distribution measurement	✓
Step analysis	✓
Custom zone definition	✓
ASCII output	✓

Software suite	Recorder
Pressure distribution measurement	√
Step analysis	√
Custom zone definition	✓
ASCII output	√
Record video	✓

buttonsens[®]

Quantifying fingertip forces

buttonsens® enables the quantitative analysis of **finger forces** and **dexterity.**

The textile sensor can be utilized to **detect forces** when pushing a **button** or any other finger-object interaction.

loadpad®

Unobtrusive low pressure sensing

loadpad® enables the effortless measurement of forces on contact areas and interfaces.

Utilize the mobile, wireless and versatile sensors to **analyze contact forces** between objects accurately and reliably.

loadsol®

Truly wireless load measurement

loadsol® enables truly wireless in-shoe force measurement now in any environment and with any movement.

Capture the interaction between foot and ground accurately, effortlessly, and with flexibility.

emed®

Accurate & reliable foot analysis

emed® enables the analysis of the barefoot at highest quality level.

Easily scan the **pressure distribution** and get a reliable and accurate **analysis of the foot function.**

pliance®

Accurate surface pressure analysis

pliance® enables the measurement of force and pressure distribution between 3D-deformed interfaces.

Utilize pliance to analyse pressure on **seats**, **saddles**, **mattresses** and any other soft or hard object.

texsens®

Unobtrusive low pressure sensing

texsens® enables the analysis of local pressures between soft interfaces (e.g. between skin & textiles).

Use texsens to precisely quantify pressure and optimize your wearable products or garmets.

novel GmbH (Global, GER) Ismaninger Str. 51, 81675 Munich tel: +49 (89) 417767-0 e-mail: sales@novel.de web: www.novel.de novel electronics inc. (North America) 3367 Babcock Blvd, Suite 101 Pittsburgh, PA 15237 tel: +1 (412) 755-0200 e-mail: novelinc@novelusa.com

web: www.novelusa.com